熱線:021-66110819,13564362870
Email:info@vizai.cn
熱線:021-66110819,13564362870
Email:info@vizai.cn
Winkler技術(shù)是估算浮游生物系統(tǒng)中細(xì)菌呼吸最常用的技術(shù)。該技術(shù)具有較高的靈敏度(見表2),但其缺點(diǎn)是無法隨時(shí)間連續(xù)監(jiān)測(cè)氧氣濃度。呼吸通常根據(jù)初始和最終氧氣濃度之間的差異計(jì)算,假設(shè)在孵化期間氧氣呈線性減少。先前的研究已經(jīng)表明,長(zhǎng)期培養(yǎng)過程中氧氣的減少并不總是線性的,但可以表現(xiàn)出不同的模式,如指數(shù)衰減或指數(shù)增加(Biddanda et al.1994;Pomeroy et al.1994)。此外,盡管靈敏度很高,但通常需要較長(zhǎng)的孵育時(shí)間來檢測(cè)顯著的呼吸速率,特別是在低營(yíng)養(yǎng)水域中,在那里孵育可長(zhǎng)達(dá)36小時(shí)。這些長(zhǎng)時(shí)間孵化的主要后果有充分的記錄;這包括細(xì)菌數(shù)量和活性的變化(見del Giorgio和Cole 1998年的綜述),以及群落組成的變化(Massana等人,2001年;Gattuso等人,2002年)。
表2. 測(cè)量浮游生物環(huán)境中氧濃度的不同方法
使用氧氣微探針測(cè)量細(xì)菌呼吸可以解決離散測(cè)量中遇到的主要問題之一:在黑暗培養(yǎng)期間監(jiān)測(cè)氧氣減少。在這項(xiàng)研究中進(jìn)行的27項(xiàng)測(cè)量中,只有9項(xiàng)顯示出氧濃度的線性下降,其他的顯示出某種程度上與水的營(yíng)養(yǎng)狀態(tài)相關(guān)的趨勢(shì)。這種監(jiān)控有兩個(gè)主要優(yōu)點(diǎn)。首先,通過跟蹤氧濃度與時(shí)間的關(guān)系,可以檢測(cè)到顯著耗氧量的開始。由于采用了保護(hù)陰極(Revsbech 1989),氧氣微探針不會(huì)消耗氧氣,并且顯示出約0.1μM O2的高精度,該值與在高精度Winkler測(cè)量中觀察到的值相似(見表2)。然而,這種高靈敏度被背景噪聲抵消,背景噪聲通常發(fā)生在用微探針測(cè)量氧氣的過程中。因此,在浮游水域進(jìn)行氧氣測(cè)量時(shí),0.1μM的理論精度實(shí)際上降低到0.5μM O2。
第二個(gè)優(yōu)點(diǎn)是,一旦發(fā)現(xiàn)顯著的氧氣減少,就可以大大縮短培養(yǎng)時(shí)間,從而在記錄足夠的數(shù)據(jù)點(diǎn)時(shí)停止培養(yǎng)。因此,通過最小化瓶子效應(yīng)和伴隨的群落變化,在盡可能接近初始原位條件的條件下進(jìn)行測(cè)量。
然而,氧微探針的精度不足以測(cè)量培養(yǎng)時(shí)間短的貧營(yíng)養(yǎng)水體中的細(xì)菌呼吸。對(duì)貧營(yíng)養(yǎng)水體中氧濃度的監(jiān)測(cè)表明,只有在培養(yǎng)過程中細(xì)菌活性和生物量增加后,氧微探針才能測(cè)量到氧濃度的降低(圖4B)。這清楚地表明,這些水域的呼吸測(cè)量仍然存在問題,因?yàn)槟壳斑€沒有靈敏度足以檢測(cè)這些非常低的原位呼吸率的技術(shù)。Gattuso等人(2002年)提出了替代技術(shù)的應(yīng)用,這將提供更高的氧敏感性,因此可能大大縮短培養(yǎng)時(shí)間,例如使用膜入口離子阱質(zhì)譜法(Cowie和Lloyd,1999年)來估計(jì)呼吸速率。
BGE的測(cè)定需要估計(jì)細(xì)菌產(chǎn)量。這通常是通過使用放射性標(biāo)記的亮氨酸或胸腺嘧啶核苷測(cè)量蛋白質(zhì)或DNA合成速率來完成的,盡管也可以使用細(xì)菌豐度和大小的變化。通過加入放射性示蹤劑來估計(jì)細(xì)菌產(chǎn)量可以在很短的培養(yǎng)時(shí)間內(nèi)完成,并且被認(rèn)為是原位率的一個(gè)很好的代表。然而,BGE是根據(jù)比用于測(cè)定細(xì)菌產(chǎn)量的時(shí)間更長(zhǎng)的培養(yǎng)時(shí)間內(nèi)估計(jì)的細(xì)菌呼吸來計(jì)算的。因此,BGE是根據(jù)在兩種不同培養(yǎng)條件下估計(jì)的兩種代謝過程的速率來計(jì)算的,這可能會(huì)使其產(chǎn)生偏差(即,在短時(shí)間間隔內(nèi)測(cè)量的生產(chǎn)速率可能與更長(zhǎng)時(shí)間范圍內(nèi)的呼吸速率不一致)。根據(jù)培養(yǎng)期間細(xì)菌豐度的變化估算細(xì)菌凈產(chǎn)量,以進(jìn)行呼吸測(cè)量,這是一種替代解決方案。通過使用非破壞性方法測(cè)量氧氣變化,可以在培養(yǎng)結(jié)束時(shí)獲得子樣本,以確定細(xì)菌的凈生物量。這樣,兩個(gè)過程將以相同的時(shí)間尺度和相同的孵化條件進(jìn)行估計(jì)。
通過連續(xù)監(jiān)測(cè)細(xì)菌呼吸測(cè)量期間的氧氣變化來縮短培養(yǎng)時(shí)間的可能性需要以足夠的精度確定細(xì)菌凈生物量的產(chǎn)生。為了達(dá)到所需的靈敏度,使用表觀熒光顯微鏡測(cè)定細(xì)菌數(shù)量需要對(duì)大量細(xì)菌進(jìn)行計(jì)數(shù),并使用多個(gè)復(fù)制品,特別是在貧營(yíng)養(yǎng)水域。這將大大增加與測(cè)量相關(guān)的工作量。流式細(xì)胞術(shù)可能是測(cè)定呼吸培養(yǎng)期間細(xì)菌凈生物量的一種替代技術(shù)。與表面熒光顯微鏡相比,該技術(shù)提供了一種更高靈敏度的細(xì)菌數(shù)量測(cè)量方法(Troussellier等人,1999年;Lemarchand等人,2001年)。此外,流式細(xì)胞術(shù)可用于在培養(yǎng)開始和結(jié)束時(shí)估計(jì)細(xì)胞的生物體積,甚至蛋白質(zhì)含量(Zubkov等人,1999年),從而更好地計(jì)算細(xì)菌凈產(chǎn)量,因?yàn)樵贐GE測(cè)定的培養(yǎng)過程中,經(jīng)常報(bào)告細(xì)菌細(xì)胞生物體積的變化(Gattuso等人,2002年)。
Amon, R. M. W., and R. Benner. 1996. Bacterial utilization of different size classes of dissolved organic matter. Limnol. Oceanogr. 41:41-51.
Barillier, A., and J. Garnier. 1993. Influence of temperature and substrate concentration on bacterial growth yield in Seine River water batch cultures. Appl. Environ. Microbiol. 59: 1678-1682.
Biddanda, B., S. Opsahl, and R. Benner. 1994. Plankton respiration and carbon flux through bacterioplankton on the Louisiana shelf. Limnol. Oceanogr. 39:1259-1275.
Bjornsen, P. K. 1986. Bacterioplankton growth yield in continuous seawater cultures. Mar. Ecol. Prog. Ser. 30:191-196.
Bouvier, T. C., and P. A. del Giorgio. 2002. Compositional changes in free-living bacterial communities along a salinity gradient in two temperate estuaries. Limnol. Oceanogr. 47:453-470.
Carlson, C. A., and H. W. Ducklow. 1996. Growth of bacterioplankton and consumption of dissolved organic carbon in the Sargasso Sea. Aquat. Microb. Ecol. 10:69-85.
Cho, B. C., and F. Azam. 1988. Major role of bacteria in biogeochemical fluxes in the ocean's interior. Nature 332:441-443.
Coffin, R., J. Connolly, and P. S. Harris. 1993. Availability of dissolved organic carbon to bacterioplankton examined by oxygen utilization. Mar. Ecol. Prog. Ser. 101:9-22.
Cowie, G., and D. J. Lloyd. 1999. Membrane inlet ion trap mass spectrometry for the direct measurement of dissolved gas in ecological samples. J. Microbiol. Meth. 35:1-12.
Daneri, G., B. Riemann, and P. J. L. Williams. 1994. In situ bacterial production and growth yield measured by thymidine, leucine and fractionated dark oxygen uptake. J. Plankt. Res. 16:105-113
del Giorgio, P. A., and T. C. Bouvier. 2002. Linking the physiologic and phylogenetic successions in free-living bacterial communities along an estuarine salinity gradient. Limnol. Oceanogr. 47:471-486.
——— and J. J. Cole. 1998. Bacterial growth efficiency in natural aquatic systems. Annu. Rev. Ecol. Syst. 29:503–541.
Douillet, P. 1998. Tidal dynamics of the south-west lagoon of New-Caledonia: observations and 2D numerical modeling. Oceanologica Acta 21:69-79.
Ducklow, H. W., and C. A. Carlson. 1992. Oceanic bacterial production. Adv. Microb. Ecol. 12:113-181.
Fuchs, B. M., M. V. Zubkov, K. Sahm, P. H. Burkill, and R. Amann. 2000. Changes in community composition during dilution cultures of marine bacterioplankton as assessed by flow cytometric and molecular biological techniques. Environ. Microbiol. 2:191-201.
Fuhrman, J. A. 1992. Bacterioplankton role in cycling of organic matter: the microbial food web, p. 361-383. In: P. G. Falkowski and A. D. Woodhead [eds.], Primary productivity and biogeochemical cycles in the sea. Plenum Press, New York.
Fukuda, R., H. Ogawa, T. Nagata, I. Koike. 1998. Direct determination of carbon and nitrogen contents of natural bacterial assemblages in marine environments. Appl. Environ. Microbiol. 64:3352-3358.
Gattuso, J. P., S. Peduzzi, M. D. Pizay, and M. Tonolla. 2002.
Changes in freshwater bacterial community composition during measurements of microbial and community respiration. J. Plankt. Res. 24:1197-1206. Griffith, P. C. 1988. A high-precision respirometer for measuring small rates of change in the oxygen concentration of natural waters. Limnol. Oceanogr. 33:632-638.
———, D. J. Douglas, and S. C. Wainright. 1990. Metabolic activity of size-fractionated microbial plankton in estuarine, nearshore and continental shelf waters of Georgia. Mar. Ecol. Prog. Ser. 59:263-270.
Hobbie, J. E., and C. C. Crawford. 1969. Respiration corrections for bacterial uptake of dissolved organic compounds in natural waters. Limnol. Oceanogr. 14:528-532.
Jeffrey, S. W., and G. F. Humphrey. 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in algae, phytoplankton and higher plants. Biochem. Physiol. Pflanz. 167:191-194.
Jorgensen, N. O. G., N. Kroer, and R. B. Coffin.1994. Utilization of dissolved nitrogen by heterotrophic bacterioplankton: effect of substrate C/N ratio. Appl. Environ. Microbiol. 60:4124-4133.
Kana, T., C. Darkangelo, M. D. Hunt, J. B. Oldham, G. E. Bennett, and J. C. Cornwell. 1994. Membrane inlet mass spectrometer for rapid high-precision determination of N2, O2, and Ar in environmental water samples. Anal. Chem. 66:4166-4170.
Kirchman, D. L., J. Sigda, R. Kapuscinski, and R. Mitchell. 1982. Statistical analysis of the direct count method for enumerating bacteria. Appl. Environ. Microbiol. 44:376-382.
Kroer, N. 1993. Bacterial growth efficiency on natural dissolved organic matter. Limnol. Oceanogr. 38:1282-1290.
Langdon, C. 1993. Community respiration measurements using a pulsed O2 electrode, p. 447-453. In: P. F. Kemp, B. F. Sherr, E. B. Sherr, and J. J. Cole [eds.], Handbook of methods in aquatic microbial ecology, Lewis Publisher. Lee, S., and J. A. Furhman. 1987. Relationship between biovolume and biomass of naturally derived marine bacterioplankton. Appl. Environ. Microbiol. 53:1298-1303.
Lemarchand, K., N. Parthuisot, P. Catala, and P. Lebaron. 2001. Comparative assessment of epifluorescence microscopy, flow cytometry and solid-phase cytometry used in the enumeration of specific bacteria in water. Aquat. Microb. Ecol. 25:301-309.
Lemée, R., E. Rochelle-Newall, F. Van Wambeke, M. D. Pizay, P. Rinaldi, and J. P. Gattuso. 2002. Seasonal variation of bac terial production, respiration and growth efficiency in the open NW Mediterranean Sea. Aquat. Microb. Ecol. 29:227-237.
Lorenzen, C. J. 1966. A method for the continuous measurement of in vivo chlorophyll concentration. Deep-Sea Res. 13:223-227.
Massana, R., C. Pedros-Alio, E. O. Casamayor, and J. M. Gasol. 2001. Changes in marine bacterioplankton phylogenetic composition during incubations designed to measure biogeochemically significant parameters. Limnol. Oceanogr. 46:1181-1188.
Middelboe, M., and M. Sondergaard. 1993. Bacterioplankton growth yield: seasonal variations and coupling to substrate lability and β-glucosidase activity. Appl. Environ. Microbiol. 59:3916-3921. ———, B. Nielsen, and M. Sondergaard. 1992. Bacterial utilization of dissolved organic carbon (DOC) in coastal waters—determination of growth yield. Arch. Hydrobiol. Ergebn. Limnol. 37:51-61.
Pomeroy, L. R., W. J. Wiebe, D. Deibel, R. J. Thompon, G. T. Rowe, and J. D. Pakulski. 1991. Bacterial responses to temperature and substrate concentration during the Newfoundland spring bloom. Mar. Ecol. Prog. Ser. 75:143-159.
———, J. E. Sheldon, and W. M. Sheldon. 1994. Changes in bacterial numbers and leucine assimilation during estimations of microbial respiratory rates in seawater by the precision Winkler method. Appl. Environ. Microbiol. 60: 328–332.
———, J. E. Sheldon, W. M. Sheldon, and F. Peters. 1995. Limits to growth and respiration of bacterioplankton in the Gulf of Mexico. Mar. Ecol. Prog. Ser. 117:259-268.
Pradeep Ram, A. S., S. Nair, D. Chandramohan. 2003. Bacterial growth efficiency in the tropical estuarine and coastal waters of Goa, southwest coast of India. Microb. Ecol. 45: 88-96.
Revsbech, N. P. 1989. An oxygen microsensor with a guard cathode. Limnol. Oceanogr. 34:472-476.
Roland, F., N. F. Caraco, and J. J. Cole. 1999. Rapid and precise determination of dissolved oxygen by spectrophotometry: Evaluation of interference from color and turbidity. Limnol. Oceanogr. 44:1148-1154.
Sch?fer, H., P. Servais, and G. Muyzer. 2000. Successional changes in the genetic diversity of a marine bacterial assemblage during confinement. Arch. Microbiol. 173:138-145.
Sherr, B. F., and E. B. Sherr. 2003. Community respiration/ production and bacterial activity in the upper water column of the central Arctic Ocean. Deep-Sea Res. Part I 50:529-542.
Smith, E. M., and Y. T. Prairie. 2004. Bacterial metabolism and growth efficiency in lakes: The importance of phosphorus availability. Limnol. Oceanogr. 49:137-147.
Taylor, G. T., J. Way, and M. Scranton. 2003. Planktonic carbon cycling and transport in surface waters of the highly urbanized Hudson river estuary. Limnol. Oceanogr. 48: 1779-1795.
Troussellier, M., C. Courties, P. Lebaron, and P. Servais. 1999. Flow cytometric discrimination of bacterial populations in seawater based on SYTO 13 staining of nucleic acids. FEMS Microbiol. Ecol. 29:319-330.
Tulonen, T, Salonen K, Arvola L. 1992. Effects of different molecular weight fractions of dissolved organic matter on the growth of bacteria, algae and protozoa from a highly humic lake. Hydrobiologia 229:239-252.
Yentsch, C. S., and D. W. Menzel. 1963. A method for the determination of phytoplankton chlorophyll and pheophytin by fluorescence. Deep-Sea Res. 10:221-231.
Zweifel, U. L., B. Norrman, and A. Hagstr?m. 1993. Consumption of dissolved organic carbon by marine bacteria and demand for inorganic nutrients. Mar. Ecol. Prog. Ser. 101: 23-32.
Zubkov, M. V., B. M. Fuchs, H. Eilers, P. H. Burkill, and R. Amann. 1999. Determination of total protein content of bacterial cells by SYPRO staining and flow cytometry. Appl. Environ. Microbiol. 65:3251-3257.
使用氧微電極來研究細(xì)菌的呼吸作用以確定浮游細(xì)菌的生長(zhǎng)速率——摘要
使用氧微電極來研究細(xì)菌的呼吸作用以確定浮游細(xì)菌的生長(zhǎng)速率——材料和程序